Package ‘TrajectoryUtils’

February 19, 2026
Version 1.18.0
Date 2024-02-03
Title Single-Cell Trajectory Analysis Ultilities

Description Implements low-level utilities for single-cell trajectory analysis,
primarily intended for re-use inside higher-level packages.
Include a function to create a cluster-level minimum spanning tree
and data structures to hold pseudotime inference results.

License GPL-3
biocViews GeneExpression, SingleCell
Depends SingleCellExperiment

Imports methods, stats, Matrix, igraph, S4 Vectors,
SummarizedExperiment

Suggests BiocNeighbors, DelayedArray, DelayedMatrixStats,
BiocParallel, testthat, knitr, BiocStyle, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.1.1
BugReports https://github.com/LTLA/TrajectoryUtils/issues

URL https://bioconductor.org/packages/TrajectoryUtils
git_url https://git.bioconductor.org/packages/TrajectoryUtils
git_branch RELEASE_3_22

git_last_commit 4cf65d4

git_last_commit_date 2025-10-29

Repository Bioconductor 3.22

Date/Publication 2026-02-18

Author Aaron Lun [aut, cre],
Kelly Street [aut]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

https://github.com/LTLA/TrajectoryUtils/issues
https://bioconductor.org/packages/TrajectoryUtils

2 averagePseudotime

Contents

averagePseudotime
createClusterMST e
defineMSTPaths
guessMSTRoOOtS e
PseudotimeOrdering
TOWINCAN .« . o v v v e e e e e et e e e e e e e e e e

splitByBranches

Index

averagePseudotime Compute the average pseudotime

Description

Compute the average pseudotime for each cell across all paths in which it is involved.

Usage

averagePseudotime(x, i = 1L)

Arguments
X A numeric matrix-like object containing pseudotime orderings. Alternatively, a
PseudotimeOrdering object containing such a matrix.
i Integer scalar or string specifying the entry of pathStats(x) containing the
pseudotime matrix, if x is a PseudotimeOrdering object.
Details

Averaging the pseudotime is a convenient way to consolidate multiple paths into a single ordering
for, e.g., visualization. It is permissible as cells involved in multiple paths should generally have
similar pseudotimes in each path, under assumption that the cell is involved in the part of the tra-
jectory that is common to those paths. In such cases, the average is just a way of compressing those
pseudotimes into a single value. Conversely, for cells that are unique to a single path, the average

collapses to that path’s pseudotime (assuming that all other values are NA).

Value

A numeric vector containing the average pseudotime for each cell.

Author(s)

Aaron Lun

createClusterMST 3

Examples

pseudotimes <- matrix(rnorm(200), ncol=2)
pseudotimes[1:40,1] <- NA
pseudotimes[61:100,2] <- NA
pseudotimes[41:60,] <- runif(20)
averagePseudotime (pseudotimes)

pto <- PseudotimeOrdering(pseudotimes)
averagePseudotime(pto)

createClusterMST Minimum spanning trees on cluster centroids

Description

Build a MST where each node is a cluster centroid and each edge is weighted by the Euclidean
distance between centroids. This represents the most parsimonious explanation for a particular tra-
jectory and has the advantage of being directly intepretable with respect to any pre-existing clusters.

Usage

createClusterMST(x, ...)

S4 method for signature 'ANY'
createClusterMsT(
X!
clusters,
use.median = FALSE,
outgroup = FALSE,
outscale = 1.5,
endpoints = NULL,
columns = NULL,
dist.method = c("simple”, "scaled.full”, "scaled.diag"”, "slingshot”, "mnn"),
with.mnn = FALSE,
mnn.k = 50,
BNPARAM = NULL,
BPPARAM = NULL

S4 method for signature 'SummarizedExperiment'’
createClusterMST(x, ..., assay.type = "logcounts")

S4 method for signature 'SingleCellExperiment'’

createClusterMST(
X)
clusters = collLabels(x, onAbsence = "error"),

’

use.dimred = NULL

4 createClusterMST

Arguments

X A numeric matrix of coordinates where each row represents a cell/sample and
each column represents a dimension (usually a PC or another low-dimensional
embedding, but features or genes can also be used).

Alternatively, a SummarizedExperiment or SingleCellExperiment object con-
taining such a matrix in its assays, as specified by assay.type. This will be
transposed prior to use.

Alternatively, for SingleCellExperiments, this matrix may be extracted from its
reducedDims, based on the use.dimred specification. In this case, no transpo-
sition is performed.

Alternatively, if clusters=NULL, a numeric matrix of coordinates for cluster
centroids, where each row represents a cluster and each column represents a
dimension Each row should be named with the cluster name. This mode can
also be used with assays/matrices extracted from SummarizedExperiments and
SingleCellExperiments.

For the generic, further arguments to pass to the specific methods.

For the SummarizedExperiment method, further arguments to pass to the ANY
method.

For the SingleCellExperiment method, further arguments to pass to the Sum-
marizedExperiment method (if use.dimred is specified) or the ANY method
(otherwise).

clusters A factor-like object of the same length as nrow(x), specifying the cluster iden-
tity for each cell in x. If NULL, x is assumed to already contain coordinates for
the cluster centroids.

Alternatively, a matrix with number of rows equal to nrow(x), containing soft

assignment weights for each cluster (column). All weights should be positive
and sum to 1 for each row.

use.median A logical scalar indicating whether cluster centroid coordinates should be com-
puted using the median rather than mean.

outgroup A logical scalar indicating whether an outgroup should be inserted to split unre-
lated trajectories. Alternatively, a numeric scalar specifying the distance thresh-
old to use for this splitting.

outscale A numeric scalar specifying the scaling of the median distance between cen-
troids, used to define the threshold for outgroup splitting. Only used if outgroup=TRUE.

endpoints A character vector of clusters that must be endpoints, i.e., nodes of degree 1 or
lower in the MST.

columns A character, logical or integer vector specifying the columns of x to use. If NULL,
all provided columns are used by default.

dist.method A string specifying the distance measure to be used, see Details.
with.mnn Logical scalar, deprecated; use dist.method="mnn" instead.

mnn. k An integer scalar specifying the number of nearest neighbors to consider for the
MNN-based distance calculation when dist.method="mnn". See findMutualNN
for more details.

BNPARAM A BiocNeighborParam object specifying how the nearest-neighbor search should
be performed when dist.method="mnn", see the BiocNeighbors package for
more details.

createClusterMST 5

BPPARAM A BiocParallelParam object specifying whether the nearest neighbor search should
be parallelized when dist.method="mnn", see the BiocNeighbors package for
more details.

assay. type An integer or string specifying the assay to use from a SummarizedExperiment
X.
use.dimred An integer or string specifying the reduced dimensions to use from a SingleCell-

Experiment x.

Value

A graph object containing an MST computed on centers. Each node corresponds to a cluster
centroid and has a numeric vector of coordinates in the coordinates attribute. The edge weight is
set to the Euclidean distance and the confidence is stored as the gain attribute.

Computing the centroids

By default, the cluster centroid is defined by taking the mean value across all of its cells for each
dimension. If clusters is a matrix, a weighted mean is used instead. This treats the column of
weights as fractional identities of each cell to the corresponding cluster.

If use.median=TRUE, the median across all cells in each cluster is used to compute the centroid
coordinate for each dimension. (With a matrix-like clusters, a weighted median is calculated.)
This protects against outliers but is less stable than the mean. Enabling this option is advisable if
one observes that the default centroid is not located near any of its points due to outliers. Note
that the centroids computed in this manner is not a true medoid, which was too much of a pain to
compute.

Introducing an outgroup

If outgroup=TRUE, we add an outgroup to avoid constructing a trajectory between “unrelated” clus-
ters (Street et al., 2018). This is done by adding an extra row/column to the distance matrix corre-
sponding to an artificial outgroup cluster, where the distance to all of the other real clusters is set
to w/2. Large jumps in the MST between real clusters that are more distant than w will then be
rerouted through the outgroup, allowing us to break up the MST into multiple subcomponents (i.e.,
a minimum spanning forest) by removing the outgroup.

The default w value is computed by constructing the MST from the original distance matrix, com-
puting the median edge length in that MST, and then scaling it by outscale. This adapts to the
magnitude of the distances and the internal structure of the dataset while also providing some mar-
gin for variation across cluster pairs. The default outscale=1.5 will break any branch that is 50%
longer than the median length.

Alternatively, outgroup can be set to a numeric scalar in which case it is used directly as w.

Forcing endpoints

If certain clusters are known to be endpoints (e.g., because they represent terminal states), we can
specify them in endpoints. This ensures that the returned graph will have such clusters as nodes of
degree 1, i.e., they terminate the path. The function uses an exhaustive search to identify the MST
with these constraints. If no configuration can be found, an error is raised - this will occur if all
nodes are specified as endpoints, for example.

If outgroup=TRUE, the function is allowed to connect two endpoints together to create a two-node
subcomponent. This will result in the formation of a minimum spanning forest if there are more
than two clusters in x. Of course, if there are only two nodes and both are specified as endpoints, a
two-node subcomponent will be formed regardless of outgroup.

6 createClusterMST

Note that edges involving endpoint nodes will have infinite confidence values (see below). This
reflects the fact that they are forced to exist during graph construction.

Confidence on the edges

For the MST, we obtain a measure of the confidence in each edge by computing the distance gained
if that edge were not present. Ambiguous parts of the tree will be less penalized from deletion of
an edge, manifesting as a small distance gain. In contrast, parts of the tree with clear structure will
receive a large distance gain upon deletion of an obvious edge.

For each edge, we divide the distance gain by the length of the edge to normalize for cluster reso-
Iution. This avoids overly penalizing edges in parts of the tree involving broad clusters while still
retaining sensitivity to detect distance gain in overclustered regions. As an example, a normalized
gain of unity for a particular edge means that its removal requires an alternative path that increases
the distance travelled by that edge’s length.

The normalized gain is reported as the "gain" attribute in the edges of the MST from createClusterMsT.
Note that the "weight" attribute represents the edge length.

Distance measures

Distances between cluster centroids may be calculated in multiple ways:

* The default is "simple”, which computes the Euclidean distance between cluster centroids.

* With "scaled.diag"”, we downscale the distance between the centroids by the sum of the
variances of the two corresponding clusters (i.e., the diagonal of the covariance matrix). This
accounts for the cluster “width” by reducing the effective distances between broad clusters.

* With "scaled. full”, we repeat this scaling with the full covariance matrix. This accounts
for the cluster shape by considering correlations between dimensions, but cannot be computed
when there are more cells than dimensions.

* The "slingshot” option will typically be equivalent to the "scaled. full” option, but switches
to "scaled.diag"” in the presence of small clusters (fewer cells than dimensions in the re-
duced dimensional space).

* For "mnn", see the more detailed explanation below.

If clusters is a matrix with "scaled.diag"”, "scaled.full” and "slingshot”, a weighted co-
variance is computed to account for the assignment ambiguity. In addition, a warning will be raised
if use.median=TRUE for these choices of dist.method; the Mahalanobis distances will not be cor-
rectly computed when the centers are medians instead of means.

Alternative distances with MNN pairs

While distances between centroids are usually satisfactory for gauging cluster “closeness”, they
do not consider the behavior at the boundaries of the clusters. Two clusters that are immediately
adjacent (i.e., intermingling at the boundaries) may have a large distance between their centroids if
the clusters themselves span a large region of the coordinate space. This may preclude the obvious
edge from forming in the MST.

In such cases, we can use an alternative distance calculation based on the distance between mutual
nearest neighbors (MNNs). An MNN pair is defined as two cells in separate clusters that are each
other’s nearest neighbors in the other cluster. For each pair of clusters, we identify all MNN pairs
and compute the median distance between them. This distance is then used in place of the distance
between centroids to construct the MST. In this manner, we focus on cluster pairs that are close at
their boundaries rather than at their centers.

defineM S TPaths 7

This mode can be enabled by setting dist.method="mnn", while the stringency of the MNN def-
inition can be set with mnn.k. Similarly, the performance of the nearest neighbor search can be
controlled with BPPARAM and BSPARAM. Note that this mode performs a cell-based search and so
cannot be used when x already contains aggregated profiles.

Author(s)

Aaron Lun

References

Ji Z and Ji H (2016). TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq
analysis. Nucleic Acids Res. 44, el17

Street K et al. (2018). Slingshot: cell lineage and pseudotime inference for single-cell transcrip-
tomics. BMC Genomics, 477.

Examples

Mocking up a Y-shaped trajectory.

centers <- rbind(c(0,0), c(0, -1), c(1, 1), c(-1, 1))
rownames(centers) <- seq_len(nrow(centers))

clusters <- sample(nrow(centers), 1000, replace=TRUE)
cells <- centers[clusters,]

cells <- cells + rnorm(length(cells), sd=0.5)

Creating the MST:
mst <- createClusterMST(cells, clusters)
plot(mst)

We could also do it on the centers:
mst2 <- createClusterMST(centers, clusters=NULL)
plot(mst2)

Works if the expression matrix is in a SE:
library(SummarizedExperiment)

se <- SummarizedExperiment(t(cells), colData=DataFrame(group=clusters))
mst3 <- createClusterMST(se, se$group, assay.type=1)

plot(mst3)

defineMSTPaths Define paths through the MST

Description
Define paths through the MST, either from pre-specified root nodes or based on external timing
information.

Usage

defineMSTPaths(g, roots, times = NULL, clusters = NULL, use.median = FALSE)

8 defineMSTPaths

Arguments

g A graph object containing a minimum spanning tree, e.g., from createClusterMsT.
roots A character vector specifying the root node for each component in g.

times A numeric vector of length equal to the number of nodes in g, specifying the
external time associated with each node. This should be named with the name
of each node. Alternatively, a numeric vector of length equal to the number of
cells, in which case clusters must be specified.

clusters A vector or factor specifying the assigned cluster for each cell, where each clus-
ter corresponds to a node in g.

Alternatively, a matrix with number of rows equal to nrow(x), containing soft
assignment weights for each cluster (column). All weights should be positive
and sum to 1 for each row.

This only has an effect if times is set to a vector of length equal to the number
of cells.

use.median Logical scalar indicating whether the time for each cluster is defined as the me-
dian time across its cells. The mean is used by default. This only has an effect
if clusters is specified.

Details

When roots is specified, a path is defined from the root to each endpoint node (i.e., with degree 1)
in g. We expect one root node to be specified for each component in g.

When times is specified, a path is defined from each local minima in time to the nearest local max-
ima within each component of g. Timing information can be defined from experimental metadata
or with computational methods like RNA velocity.

Value
A list of character vectors. Each vector contains the names of nodes in g and defines a path through
the MST from a root to an endpoint node.

Author(s)

Aaron Lun

See Also

guessMSTRoots, to obtain roots without any prior information.

splitByBranches, for a root-free way of obtaining paths.

Examples

library(igraph)

test.g <- make_graph(c("A", "B", "B", "C", "B", "D"), directed=FALSE)
defineMSTPaths(test.g, roots="A")

defineMSTPaths(test.g, roots="B")

defineMSTPaths(test.g, times=c(A=0, B=1, C=2, D=3))
defineMSTPaths(test.g, times=c(A=0, B=-1, C=2, D=3))
defineMSTPaths(test.g, times=c(A=0, B=5, C=2, D=3))

guessMSTRoots 9

guessMSTRoots Guess the roots of a MST

Description

Pick nodes to use as the root(s) of an MST using a variety of ad hoc methods.

Usage

guessMSTRoots(

g,
method = c("degreel”, "maxstep”, "maxlen”, "minstep”, "minlen”)

)

Arguments

g A graph object containing a MST. All nodes should be named.
method String specifying the method to use to pick the root.

Details

When method="degree1", an arbitrary node of degree 1 is chosen as the root for each component.
This aims to reduce the number of branch events by starting from an already-terminal node.

When method="maxstep”, we pick the node of degree 1 that has the highest average number of
steps to reach all other nodes of degree 1. This aims to maximize the number of shared clusters
between different paths when traversing g from the root to the other terminal nodes, under the
philosophy that branch events should occur as late as possible. When method="maxlen", we instead
pick the node of degree 1 that has the highest average distance to reach all other nodes of degree 1.
This also considers the distance spanned by each cluster.

When method="minstep"”, we pick the node that has the lowest average number of steps to reach
all nodes of degree 1. This aims to minimize the number of shared clusters between different paths
under the philosophy that branch events should occur as early as possible. When method="minlen",
we instead pick the node that has the highest average distance to reach all nodes of degree 1.

Value

A character vector containing the identity of the root for each component in g.

Author(s)

Aaron Lun, based on code by Kelly Street

Examples

library(igraph)
edges <- c("A", "B", "B", "C", "C", "D", "C", "E")
g <- make_graph(edges, directed=FALSE)

guessMSTRoots(g)
guessMSTRoots(g, method="maxstep")
guessMSTRoots(g, method="minstep")

10

PseudotimeOrdering

Works with multiple components.

edges2 <- c(edges, "F", "G", "G", "H")
g2 <- make_graph(edges2, directed=FALSE)
guessMSTRoots(g2)

PseudotimeOrdering The PseudotimeOrdering class

Description

The PseudotimeOrdering class defines a two-dimensional object where rows represent cells and
columns represent paths through a trajectory (i.e., “lineages”). It is expected to contain a numeric
matrix of pseudotime orderings for each cell (row) in each path (column). If a cell is on a path, it
should have a valid pseudotime for the corresponding column; otherwise its entry should be set to
NA. Cells may lie on multiple paths if those paths span shared regions of the trajectory.

Constructor

PseudotimeOrdering(pathStats, cellData=NULL, pathData=NULL, metadata=1ist() will con-
struct a PseudotimeOrdering object given:

* pathStats, a (usually numeric) matrix-like object of pseudotime orderings as described above.
Alternatively, a list of such matrices can be supplied if multiple statistics are associated with
each cell/path combination. By convention, the first matrix in such a list should contain the
pseudotime orderings.

* cellData, a DataFrame of cell-level metadata. This should have number of rows equal to the
number of cells.

* pathData, a DataFrame of path-level metadata. This should have number of rows equal to the
number of paths.

* metadata, a list of any additional metadata to be stored in the object.

Getting/setting path statistics

In the following code chunks, x is a PseudotimeOrdering object.

pathStat(x, i=1L, withDimnames=TRUE): Returns a (usually numeric) matrix-like object con-
taining some path statistics. The default of i=1L will extract the first matrix of path statistics -
by convention, this should contain the pseudotime orderings. i may also be a string if the path
statistics in x are named. The dimnames of the output matrix are guaranteed to be the same as
dimnames(x) if withDimnames=TRUE.

pathStat(x, i=1L, withDimnames=TRUE) <- value: Replaces the path statistics at i in x with
the matrix value. This should have the same dimensions as x, and if withDimnames=TRUE, it
should also have the same dimnames.

pathStats(x, withDimnames=TRUE): Returns a list of matrices containing path statistics. The
dimnames of each matrix are guaranteed to be the same as dimnames (x) if withDimnames=TRUE.

pathStats(x, withDimnames=TRUE) <- value: Replaces the path statistics in x with those in the
list value. Each entry of value should have the same dimensions as x. The dimnames of each
matrix should also be the same as dimnames (x) if withDimnames=TRUE.

PseudotimeOrdering 11

pathStatNames(x): Returns a character vector containing the names for each matrix of path statis-
tics.

pathStatNames(x) <- value: Replaces the names of the path statistics with those in the character
vector value.

Getting/setting path metadata

In the following code chunks, x is a PseudotimeOrdering object.
npaths(x): Returns an integer scalar containing the number of paths in x. This is the same as
ncol(x).

pathnames(x): Returns a character vector containing the names of paths in x (or NULL, if no names
are available). This is the same as colnames(x).

pathnames(x) <- value: Replaces the path names in x with those in the character vector value
(or NULL, to unname the paths). This is the same as colnames(x) <- value.

pathData(x, use.names=TRUE): Returns a DataFrame containing the path-level metadata of x.
This has the same number of rows as the number of columns in x. Row names are guaranteed
to be equal to pathnames(x) if use.names=TRUE.

pathData(x) <- value: Replaces the path-level metadata of x with a DataFrame value containing
the same number of rows.

Getting/setting cell metadata

In the following code chunks, x is a PseudotimeOrdering object.
ncells(x): Returns an integer scalar containing the number of cells in x. This is the same as
nrow(x).

cellnames(x): Returns a character vector containing the names of cells in x (or NULL, if no names
are available). This is the same as rownames(x).

cellnames(x) <- value: Replaces the cell names in x with those in the character vector value (or
NULL, to unname the cells). This is the same as rownames(x) <- value.

cellData(x, use.names=TRUE): Returns a DataFrame containing the cell-level metadata of x.
This has the same number of rows as x. Row names are guaranteed to be equal to cellnames(x)
if use.names=TRUE.

cellData(x) <- value: Replaces the cell-level metadata of x with a DataFrame value containing
the same number of rows.

Further operations

In the following code chunks, x is a PseudotimeOrdering object.

x$name and x$name <- value will get and set, respectively, the named field of the cellData. This
is primarily provided for convenience.

Subsetting operations (e.g., x[i, j1) and combining operations (rbind(x, ...), cbind(x, ...))
will return the expected PseudotimeOrdering object.

metadata(x) and metadata(x) <- value will get and set, respectively, the metadata of x.

12 rowmean

Comments on advanced usage

The PseudotimeOrdering class is actually just a reskin of the widely-used SummarizedExperiment
class. We re-use the same underlying data structure and simply rename row and col to cell and
path, respectively. This means that any method that operates on a SummarizedExperiment can also
- in theory - be applied to PseudotimeOrdering.

We chose to do this reskinning to provide a clear conceptual break between the two classes. The
PseudotimeOrdering’s dimensions do not follow the SummarizedExperiment’s conventional “sam-
ples as columns” philosophy, as each row instead represents a cell/sample. Similarly, it is hard to
argue that the paths are really interpretable as “features” in any meaningful sense. By reskinning,
we hide the SummarizedExperiment implementation from the end-user and avoid any confusion
with the interpretation of PseudotimeOrdering’s dimensions.

Of course, we could just transpose the inputs to get them to fit into a SummarizedExperiment.
However, the use of rows as cells is convenient as we often have many cells but few paths; it is
easier to inspect the pseudotime ordering matrix with this orientation. It also allows us to store
the PseudotimeOrdering as a column in the colData of a SummarizedExperiment. In this manner,
datasets can be easily annotated with pseudotime orderings from trajectory reconstruction methods.

Author(s)

Aaron Lun

Examples

Make up a matrix of pseudotime orderings.
ncells <- 200

npaths <- 5

orderings <- matrix(rnorm(1000), ncells, npaths)

Default constructor:
(pto <- PseudotimeOrdering(orderings))
(pto <- PseudotimeOrdering(list(ordering=orderings)))

Adding some per-cell metadata:
pto$cluster <- sample(LETTERS, ncells, replace=TRUE)
table(pto$cluster)

Adding some per-path metadata:
pathData(pto)$description <- c("EMT", "differentiatoin”, "activation”, "other”, "?")
pathData(pto)

Subsetting and combining works fine:
rbind(pto, pto)

cbind(pto, pto)

pto[1:10,]

ptol[,1:2]

rowmean Compute column means based on a grouping variable

Description

Computes the column mean or median for each group of rows in a matrix.

splitByBranches 13

Usage

rowmean(x, group)

rowmedian(x, group)

Arguments
X A numeric matrix or matrix-like object.
group A vector or factor specifying the group assignment for each row of x. Alterna-
tively, a matrix of soft assignments for each row to each group (column).
Details

The naming scheme here is somewhat inspired by the rowsum function. Admittedly, it is rather con-
fusing when rowMeans computes the mean for a row across all columns while rowmean computes
the mean for a column across a subset of rows, but there you have it.

If group is a matrix, it is expected to contain soft assignment weights for each row in x. Each row
of group should contain non-negative values that sum to unity. These are used to compute weighted
means or medians via MatrixGenerics functions.

Value
A numeric matrix with one row per level of group, where the value for each column contains the
mean or median across the subset of rows corresponding that level.

Author(s)

Aaron Lun

Examples

x <= matrix(runif(100), ncol = 5)
group <- sample(1:8, 20, TRUE)
(xmean <- rowmean(x, group))
(xmeds <- rowmedian(x, group))

splitByBranches Split a graph into branch-free paths

Description
Split a graph (usually a MST, at least a DAG) into branch-free components, i.e., paths between
branch points or terminal nodes.

Usage

splitByBranches(g)

Arguments

g A graph object such as that produced by createClusterMsT.

14 splitByBranches

Details

This function implements another strategy to define paths through the MST, by simply considering
all linear sections (i.e., connected by nodes of degree 2) between branch points or terminii. The
idea is to enable characterisation of the continuum without external information or assumptions
statements about where the root is positioned, which would otherwise be required in functions such
as defineMSTPaths.

Value

A list of character vectors containins unbranched paths between branch points or terminal nodes.

Author(s)

Aaron Lun

See Also

defineMSTPaths, for the root-based method of defining paths.

Examples

library(igraph)

test.g <- make_graph(c(”A”, "B", "B", "C", "C", "D",
IIDVI, IIEII’ IIDII, IIFII’ lIFII’ IIGVI)’ directeszALsE)

splitByBranches(test.g)

Index

$,PseudotimeOrdering-method
(PseudotimeOrdering), 10

$<-,PseudotimeOrdering-method
(PseudotimeOrdering), 10

assays, 4
averagePseudotime, 2

cellData (PseudotimeOrdering), 10
cellData<- (PseudotimeOrdering), 10
cellData<-,PseudotimeOrdering-method
(PseudotimeOrdering), 10
cellnames (PseudotimeOrdering), 10
cellnames<- (PseudotimeOrdering), 10
cellnames<-,PseudotimeOrdering-method
(PseudotimeOrdering), 10
colData, 12
createClusterMsT, 3,6, S8, 13
createClusterMST,ANY-method
(createClusterMsT), 3

createClusterMST,SingleCellExperiment-method

(createClusterMsT), 3

createClusterMST, SummarizedExperiment-method

(createClusterMsT), 3

DataFrame, 10
defineMSTPaths, 7, 14

findMutualNN, 4

graph, 5,8, 9, 13
guessMSTRoots, 8, 9

ncells (PseudotimeOrdering), 10
npaths (PseudotimeOrdering), 10

pathData (PseudotimeOrdering), 10
pathData<- (PseudotimeOrdering), 10
pathData<-,PseudotimeOrdering-method
(PseudotimeOrdering), 10
pathnames (PseudotimeOrdering), 10
pathnames<- (PseudotimeOrdering), 10
pathnames<-,PseudotimeOrdering-method
(PseudotimeOrdering), 10
pathStat (PseudotimeOrdering), 10

15

pathStat<- (PseudotimeOrdering), 10
pathStat<-,PseudotimeOrdering-method
(PseudotimeOrdering), 10
pathStatNames (PseudotimeOrdering), 10
pathStatNames<- (PseudotimeOrdering), 10
pathStatNames<-,PseudotimeOrdering-method
(PseudotimeOrdering), 10
pathStats, 2
pathStats (PseudotimeOrdering), 10
pathStats<- (PseudotimeOrdering), 10
pathStats<-,PseudotimeOrdering-method
(PseudotimeOrdering), 10
PseudotimeOrdering, 2, 10
PseudotimeOrdering-class
(PseudotimeOrdering), 10

reducedDims, 4
rowmean, 12
rowMeans, 13

rowmedian (rowmean), 12
rowsum, /3

show, PseudotimeOrdering-method
(PseudotimeOrdering), 10
SingleCellExperiment, 4
splitByBranches, 8, 13
SummarizedExperiment, 4, 12

	averagePseudotime
	createClusterMST
	defineMSTPaths
	guessMSTRoots
	PseudotimeOrdering
	rowmean
	splitByBranches
	Index

